

Past, Present, and Future

John D. Cleveland, MD Associate Professor of Surgery University of Southern California Keck School of Medicine Children's Hospital Los Angeles

Past, Present, and Future

WHERE HAVE WE BEEN, WHERE ARE WE, AND WHERE ARE WE GOING?

Original Cardiac Surgery OR

Modern Cardiac Surgery OR

Paradigm Shift

in the local	224 800 tousing adheriters - duadessigneest
and Distant	221827 Produceray
my Gelen	177640 Gas doessing
and the second	221827 Proclascopy so Endothermy to god
min Talad	22 4018 Freeing durdenal adhesions
ing Sad-	225058 Set howievhaply
exacis Sweensy	220,00 Ligation - patert ductris axtorios
time Transmiss	224826 Epploration - appendectoring
plant heigh	217236 gyoundetory with drains
ing Spiller	177640 Szquestractory
a	224934 Silabation - wathread stricture
	lumiter and a l

8/13/28

\$/16/38 8/16/38

1 8/18/38

8/22/38

8/25/38 8/26/38 S.

8/27/38

\$/30/38

\$/3/38 8/2./28

alsular

discer.

amaton

1116

200,

Early Intracardiac Operations

Inflow Occlusion and Hypothermia

Cardiopulmonary Bypass

The Problems:

- Anticoagulation
- Reversal agent
- A Pump
- Oxygenator

Pumps

Screen Oxygenator

The Problems:

- Large Blood Prime
- Large Surface Area
- Clotting Issues
- Massive Air Interface
- Air Embolism

Bubble Oxygenator

The Problems:

- Large Blood Prime
- Large Surface Area
- Clotting Issues
- Massive Air Interface
- Air Embolism

Monkey Lung Oxygenator

Membrane Oxygenator

Outcomes of Pediatric Cardiac Surgery *Table 1. Early Attempts at Open-Heart Surgery With a Heart-Lung Machine*

Name	Year	No.	Outcome
Dennis	1952	2/2	Died
Gibbon	1953	5/6	Died
Helmsworth	1953	1/1	Died
Dodrill	1953	2/2	Died
Clowes	1954	2/2	Died
Mustard	1954	5/5	Died
	Total	17/18 (94.5%)	Died

Cross Circulation

Cross Circulation

hardi 20, 1994 - 5013 19, 1999				
Pathology	Corrective Operation	No. Cases	Deaths	
Ventricular Septal Defect	Suture Closure of Defect	27*	8	
Patent Ductus	Exploratory Ventriculotomy Division of Ductus	1	0	
Tetralogy of Fallot	Suture Closure of VSD and Resection of Infundibular Stenosis	10	4	
Atrioventricularis Communis	Closure of Atrial and Ventricular Defects, Correction Valvar Deformities	5	4#	
Isolated Infundibular Pulmonic Stenosis	Resection of Infundibulum	1	0	
Pulmonary Stenosis Plus IASD and Anomalous Pulmonary Drainage	Ventricular and Atrial Cardiotomies, Transposition of Pulmonary Veins	1	1	

TABLE II. DIRECT VISION INTRACARDIAC SURGERY CROSS CIRCULATION - 45 PATIENTS

*Cross circulation was used exclusively from 3/26/54 through Feb. 1955. Beginning 3/1/55 other bypass methods (bubble oxygenators, dog lung oxygenator, arterial reservoir) were utilized for lower risk patients. Cross circulation was reserved for high risks. By mid-summer 1955, the bubble oxygenator became the sole method.

*Of the 19 patients who survived ventricular septal defect closure, 10 were under 2 yrs of age, 7 under one year, and 4 were less than 6 mos of age at operation. Sixteen of the 19 survivors were recatheterized and in 12 there was no shunt. Four patients had a residual shunt and in 3 the postoperative pulmonary pressures were normal indicating that the residual shunts were small²⁰.

"Two late deaths due to mitral insufficiency.

Table 4. Hospital Mortality According to Age and Years

Hospital	Mortality
1	J

1954–1960	1995–2000
4%	
21%	
20%	
24%	
	1954–1960 4% 21% 20% 24%

Modern Mortality Rates

Year	STAT Category 1 (%)	STAT Category 2 (%)	STAT Category 3 (%)	STAT Category 4 (%)	STAT Category 5 (%)
1998	0.9	3.5	7.4	13.9	44.4
1999	1.2	2.2	5.3	14.1	20.6
2000	0.4	2.3	1.4	6.6	29.6
2001	1.1	1.5	2.4	9.1	25.1
2002	0.8	2.0	3.0	10.9	29.5
2003	0.5	1.6	3.2	7.8	22.3
2004	0.7	1.6	3.2	7.5	15.6
2005	0.6	1.6	2.9	8.2	17.8
2006	0.7	1.7	2.6	7.7	18.9
2007	0.5	2.0	3.4	8.1	18.1
2008	0.7	1.7	2.4	7.9	17.4
2009	0.5	1.5	2.4	7.1	16.7
2010	0.8	1.7	2.6	7.0	16.9
2011	0.7	1.4	2.4	7.0	18.0
2012	0.6	1.4	2.6	6.6	15.3
2013	0.4	1.2	2.3	6.6	15.2
2014	0.3	1.6	1.6	5.8	11.9
2015-2019 [*]	0.4	1.4	2.2	6.2	13.3
2016-2020*	0.4	1.5	2.3	6.3**	13.6**

Case Study: Hypoplastic Left Heart Syndrome

- Uniformly fatal before 1983
- Invention of Norwood Procedure
- "The First Twenty"

Plateauing Results

Era	Years	Mortality
1	1984-1988	40.4%
2	1989-1993	33.6%
3	1994-1998	28.7%
4	1999-2003	14.9%*
5	2004-2008	11.2%*
6	2009-2013	15.7%*

*P < .03 compared with eras 1 to 3.

USC University of Southern California Transitioning from Present→Future

- The large barriers to entry have been addressed
- Reduction in mortality where it can be avoided
 - Refinement in technique
 - Refinement of technology
 - Streamlining processes
 - Protocolization
 - Etc....
- The Focus of the PAST and PRESENT was Mortality
- The Future <u>MUST</u> Focus on Quality of Life
- The Future <u>REQUIRES</u> Paradigm Shifts

- Reduction in Interventions
- Reduction in deleterious effects from CHD and its treatments
- Minimize residual lesions
- Maximize cardiac output
- Improve Neurodevelopmental Outcomes

Novel Valves

Novel Tissue

- In Vitro Culture and Growth
- Populating Human Scaffolding
- 3-D Printing?

- Xenotransplantation
- Bioengineered Human Hearts

Α

п

Regenerative Technologies

Stop the Problem Before It Starts

- 1. Understanding the genetic basis for disease
- 2. Identifying targets for intervention
- 3. Identifying timing for intervention
- 4. Possessing the technology to safely intervene

QUESTIONS & DISCUSSION

